Available online at www.sciencedirect.com

& sc.ENcE@D.REcT@ Talanta

ELSEVIE Talanta 68 (2006) 1201-1214

www.elsevier.com/locate/talanta

A new algorithm for the determination of protolytic constants from
spectrophotometric data in multiwavelength mode:
Calculations of acidity constants of 4-(2-pyridylazo)resorcinol
(PAR) in mixed nonaqueous-water solvents

J. Ghasenit*, Sh. Nayeb?, M. Kubista?, B. Sjogreef§

& Department of Chemistry, Faculty of Science, Razi University, Kermanshah 57167, Iran
b Department of Chemistry and Biosciences, Chalmers University of Technology, Goteborg, Sweden
€ The Royal Institute of Technology, NADA, KTH, Stockholm, Sweden

Received 18 December 2004; received in revised form 4 June 2005; accepted 15 July 2005
Available online 26 August 2005

Abstract

A new efficient, simple and versatile algorithm is presented for determination of the protolytic constants from spectrophotmetric data in
multiwavelength mode based on the combining of hard and soft modeling. The algorithm was checked by determining the acidity constants
of a triprotic acid from theoretical and real absorption—pH data. The real spectral data are obtained from photometric titration of different
solutions of 4-(2-pyridylazo)resorcinol (PAR) by a standard base solution under an inert atmosphere. The algorithm starts the minimization
process using an user supplied number of components and initial guesses of the unknown parameters and refined in a least squares manne
New algorithm is implemented in the new version of DATAN package (version 3.1). The validity of the obtained results was checked by some
well known programs such as DATAN 2.1, SPECFIT/32, SQUAD, a modified version of difference spectra-gpid aurve method. The
comparison of the outputs of the DATAN 3.1 with the other programs reveals that there is a very good agreement between the obtained results
and mentioned programs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction organic chemistry is based on the observation of the effects on

acid—base equilibrium of changing molecular struc{@ie
Acid dissociation constants are important parameters to It is still believed that spectrophotometric data are inher-

indicate the extent of ionization of molecules in solution at ently less precise than potentiometric dila consequently

different pH values. The acidity constants of organic reagents most equilibrium constants are determined by means of

play a fundamental role in many analytical procedures such potentiometric titrations, and only afew general programs are

as acid-base titration, solvent extraction, complex forma- available at present for processing spectrophotometric data

tion and ion transport. It has been shown that the acid—bas€/5-18]. The most widespread of programs and algorithms

properties affect the toxicityl] chromatographic retention  for determining the acidity constants from absorbance data

behavior and pharmaceutical propertigsof organic acids are SQUAD, SPECFIT and DATAN 2.1.

and bases. Much of the theoretical foundation of modern  SQUAD [12-16]and SPECFIT17,18] are based on an
initial proposal of a chemical equilibrium model defining
species stoichiometries and based on mass-action law and

* Corresponding author. Tel.: +08 214075448; fax: +08 8318369572. ~ Mass balance equations (hard modeling methods) and also
E-mail address: jahan.ghasemi@tataa.com (J. Ghasemi). involve least squares curve fitting procedures. DATAN 2.1,
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[19-24]program calculates spectral profiles, concentrations used to assign the significant factors in PC decomposition.
and equilibrium constants by utilizing equilibrium expres- Meloun et al.[32] have compared the several methods of
sions that are related to the components. determining number of significant factors in spectroscopic
The difference spectra methdd5] is an elegant algo- data and showed the advantages and limitations of the pre-
rithm for the analysis of the mono protic acid/base equilibria sented methods. According to Beer's law the absorbance
using multiwavelength detection which recover both the dis- matrix is related to the concentrations of species and molar
sociation constants and absorption profiles spectra of organicabsorptivity, i.e.A = CV. The rank of matrixA is obtained
acid/base pairs in complex mixtures using a least squarefrom the equation rank(A) = min[rank(C), rank(¥)min(m,
method. r, n)]. Since rank ofA is equal rank ofC or V, whichever
Here, we wish to describe an algorithm, which is applied is smaller, and since rank(¥r and rank(C) r, then pro-
to the determination of the acidity constants by processing videdm < r andn < r, it will only be necessary to determine
of the pH—absorbance titration data. The ability of the new the rank of matrixA which is equivalent to the number of
version of DATAN package (DATAN 3.1, Multid Analysis  significant component83,34]. All methods to identify the
AB, Sweden, 2004) was compared with known programs true dimensionality of a data set are classified into two cat-
SQUAD, DATAN 2.1, SPECFIT/32, by refining the simu- egories: (a) precise methods based upon a knowledge of the
lated and experimental pH—absorbance data. instrumental error of the absorbance datai(A) before sta-
tistical examination; (b) approximate methods requiring no
knowledge of the instrumental error of the absorbance data,
2. Theory sinst(A). Many of these methods are empirical functions.

Since inall routine chemometrics the selection of the num- 2.2, Algorithms
ber of significant factors (chemical rank of data matrix or
determining number of light absorbing species) is a crucial 2.2.7. DATAN 2.1
step, in the next section we pointed to the fundamental of the  The theory of DATa ANalysis (DATAN 2.1) method was
existing methods, following by a brief description of each discussed by Scarmino and Kubista in several pga8r24].

algorithm in comparison with the new algorithm. The recorded spectra during a titration can be arranged in
a data matrixA which is decomposed into an orthonormal

2.1. Principal component analysis and the rank of data basis set by NIPALS or any PC decomposition equivalent

matrix method[35] as Eq.(2). TheT andPT cannot be directly

related to concentrations and spectral profiles. By assuming
Most measurements are not selective for only the con- linear responses, the spectra in masigre linear combina-
stituents of interest; but the data also contain noise. In princi- tions of the concentratio@ and spectral respondg of the
pal component analysis (PCA) the measured data are reduced¢hemical components. So,
to contain only the information that is relevant to the system
[26—30]. Thefirst step in PCAis to decompose the data matrix
A into an orthonormal basis set:

A=CV+E=~CV ©)

TheT andP' matrices can be related @andV, respec-

T q T tively, as follows:

An,m = Tn,qPq,m = Ztipi (1)

i=1 T=CR 4)
whereA,, ,, contains the recorded spectra as rows, each dig- P" = R~1v (5)
itized intom data pointsT, , the score matrix which relates . . _ .
to sample compositio®T, where the superscript ‘T’ denotes Since, ifR can be determined, th® andC matrices can
transpose, is the loading matrix which relates to spectra andbe calculated from the Eqg4) and (5). The values of pro-
q is the least of: andm, which in spectroscopy usually is tolytic constants were varied to minimize the sum of square
Eq. (1) is exact. The second step in PCA is to separate the residuals:
eigenvectors that account for the systematic variations from o , 2
those corresponding to noise: ¥2 = ZZ (Tij _ Zl‘ik%) (6)

r i=1j=1 k=1

A= Tn,rP;«I:m + En,m = Ztip;r + En,m = A + En,m (2)

— wherer andn are number of light absorbing species and num-
1=

ber of solutions, respectively. The accuracy of this fit depends
whereA is the predicted data matrik,, ,, the residual matrix crucially on the trial values of the equilibrium constants, and
andr is the number of significant components or chemical best fit determines their values and the elements of matrix
species present in the solution mixture. Elbergali ef3l] R. The details of this algorithm are explained in rgfl]
have reviewed several indicator functions, which commonly thoroughly.
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2.2.2. SPECFIT/32 and SQUAD Coj = agj — o = 1 — 205 = 10fPKa—PH)
SPECFIT/32 program was developed by Gammp et al.

. - H—pK: 2pH—pKap—pK:
[17,18]for the determination of stability constants from the + 10PH-PK&) | 1(2PH—pK2—pKas)

spectrophotometric titration data. The mathematical features 1
of this program have been descriljéd, 18], and that is sim- ~ 10PKa—pH) 4 1 PH-PKa) | 1 (2PH—pKax—pKas)
ilar to a general non-linear least squares program used for 9

calculation of stability constants. The SPECFIT32 is the lat-
est version of a global analysis program for equilibrium and c3j = a4 —azj=1—203; = 10(PKa2—pH)
kinetic systems with singular value decomposition and non-

. . : . H—pK: Kaj+pKap—pH
linear regression modeling using the Levenberg—Marquardt +10PH-PA%) 1 1 gfPRatpKa—pH)

method[36,37]. Gammp et al. used the factor analysis in B 1
this program and in continuation evolving factor analysis 1+ 10PKae—pH) | 10PH-PKas) | 1 PKa1+pKae—pH)
[38—41], as a powerful tool for the determination of inde- (10)

pendent components in a given data matrix. i

The Stability QUotients from Absorbance Data (SQUAD) whereay, ag, 3 andey relate to the mole fraction of each
program[12] derived from SCOG$L3]. Leggetti12,13]for species that forms during the titration, at title pH. The
the first time used a factor analysis method in the program for est|mategl values of pfised for_ constructing the _mg_tn@,, .
determination of stability constants. Non-linear least-squares 12t @Pplied to solve the equation systems as a initial matrix

method used is based on the minimization of the funciibn, as follows:
< T 1
. V=ACT(cch (11)
E = Z(Ycalcd_ Yobsd)iwj (1) which the best fit has found by minimization of the value of
j=1 the squared error between the actual data and the model using

wherem is the number of data points ang is the weight of  the following object function:

each absorbance value. The minimization approach, which 1 .

was used in SQUAD is more or less similar to the SPEC- x° = 722(&7 —Ay) (12)
FIT/32, i.e. the object function is a residual matrix, which min —r) 54

should minimiz_ed with r_e_sp_ect tothe stability_constants ofthe wherem, n andr as the same values defined above and where,
selected chemical equilibrium model. Running the SQUAD

has different stages that were described by Leggett in detailA = VC (13)

[16]. The calculated standard deviation of absorbasfdé¢

is used as the most important criterion for a fitness test. If,
after termination of the minimization process, the condition
sinst(A) ~ s(A) is met and the HamiltoR-factor is also less
than 1%, the hypothesis of the chemical model is taken as
being the most probable, and is accepted.

The optimum set of p4S to fit a given data matrix can
be found by minimizingyx? with least-squares curve fitting
minimization as such SIMPLEX or Marquardt—Levenberg
algorithms in MATLAB [42-45].

2.2.4. Analysis of the A—pH curve

2.2.3. Modified version of difference spectra In the classical single wavelength method4espH curve
For multiprotic compounds or mixture of, acid-base ~ analysis method, an absorbance vecfoused as experi-
pairs, onlyna parameters and initial estimated values of Mental data, which contains the absorbance values at the

the compounds. In titration systems, a data matrifrom and related to concentration matrix and molar absorptivities
photometric titration can be presented as @9 In orderto ~ Of all species by Eqg2), (11) and (16).
factorizeA, the rows ofC must be linearly independent so Using initial estimates of the acidity constants and mass

that a unique, best fit solution, exist. One of the peculiarities Palance equations the concentration of all relevant species
of the pH-dependent data set is an interdependence of the dis@re calculated. Then an estimated value of the vectois
tribution curve of acid with that of its conjugate base, where obtained by a linear least squares approach,(EL. Now
the fraction of acid and its conjugate base at a given pH canthe absorbance vectfvector form) reconstructed, E(4.3),
be calculated by the mass balance equatji@&k using estimated value €f andv (vector form), and the resid-

To develop a set of linearly independent vectors for the Ual vectore = a — a used as an objective function to refine
C matrix for a multiprotic acid system, we use the differ- the acidity.
ence of the distribution curves as Frans and H4a#%§ for
monoprotic acids:

— oy = 1— 2a;; = 10(PH-PKa) | 1 2pH-pKay—pKap) | 1 (f3pH—pKay—pKae—pKag)

C1j = o2;

1
"1+ 10PH—PKa) | 1 2PH-pKa—pKag) | 1 3pPH—pKar—pKaz—pKag) (8)
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2.2.5. New algorithm used by DATAN 3.1 equations:
In this study, we evaluate a new algorithm for the analysis
i - : i C'CR-C'T=0
of spectrophotometric data in multiwavelength mode using
combination of hard and soft modeling. In the algorithm the (T — CR) o (BCR) _0 a7)
datan by m matrix, A, is decomposed into scores and loading ox;
by PCA or SVD as shown in Eq€l)—(5).

In the above equations, the rotation maRiis not known.
The matrixC is also unknown, but by assuming a chemical
model, we can comput€ from a small set of unknown vari-
ables:

whereo denotes element by element multiplication of matri-
ces anddC/ox; is element wise differentiation df matrix
with respect the unknown paramateysHere,R is directly
computed as (€C)~1CTT from the upper equation. Insert-
ing this into the second equation gives the non-linear system

C=Clxa....xp) (14) of p equations ang unknowns:

ad
In the case of protolytic equilibria, the unknown variables, fi(x1, x2, ..., x,) = (T — CR) o (8R> =0,
x;, are the equilibrium constants. For example, consider the '

equilibria of a diprotic acid: i=12...,p (18)
K1 .
HA=HA™ +H* To solve EQq.(18), we use Newton’s method, but with
K N numerical evaluation of the Jacobian matrix, through differ-
HA™=A“" +H ence quotients, e.g.:

with equilibrium constants being, andky, respectively. It 9fi _ filki +h, x2, ..., xp) = filx1, X2, ..., xp) (19)

is not hard to see that: ox1 h
K1K> whereh is a small number. Sincg is usually small, the
CA = extra function evaluations are not too time consuming and

2
¢+ Kicq + K1K . .
H 1 152 expensive. Now upon solution of the E(.8) we have a

K . -
CHA = 11 15 better estimation of the; parameters and the program con-
2+ Kicn + K1K (15) - -
H 1€H 182 trols goes up to the Eq14) and the calculations continue
con — CE. until convergence achieved. As it is clear, this algorithm has
Heh = et + Kicn + K1K> some priority over algorithm used in DATAN 2.1 in which

the object function simply just evaluated for different series

whereca denotes the analytical concentration of acid and of acidity constants without any using of the fitting results
similarly for the other species (charges were omitted for sim- but numerical values of residuals.
plicity). The total concentration of acid has been normalized
to one. Each row irC consists of the three concentrations
at value of pH, which is known from the titration, so that 3. Experimental
with the knowledge of only the equilibrium constaitsand
K>, the entire matrixC can be computed. The number of The ability of the new algorithm in comparison to the pre-
unknowns has thus been reduced from(Bve size ofC) to vious established computer program was tested by different
2 (the number of equilibrium constants). simulated and experimental data sets. The next two sections

Any system, where a model of the chemical equilibria is are the description of the way of data simulation and gather-
known, can be treated in the same way as above to find aning.
expression of the form given by E¢L4). The introduction
of a model means that the number of unknown variables is 3 7. Arrificial data set
reduced fromn (the dimension o€) to p. Ideally,p should

be a small number. The various artificial or theoretical data sets were gener-
To determine the unknowr® andxy, x2, ..., x,, We US€  ated using the combination of the Gaussian curves to con-
Eqg. (4) and solve the minimization problem: struct the spectral profiles of each species of the assumed
triprotic acid molecule at the range 400-600 nm with res-
Min, g||T — C(x1, x2, ..., xp))R|| o (16) olution of 2nm. Different random noises with mean zero
and standard deviations 0, 1, 2 and 3% of the maximum
It would have been possible to minimi#{d‘R‘l — CH absorbance values are loaded on the simulated spectral pro-

but in practice it has find out that the minimization given by files. The concentrations of the four species of a triprotic acids
Eq. (16) works basically better. Setting the derivative of the were generated using SPECFIT/32 acid dissociation routine.
expression (Eq16)) to be minimized equal to zero gives the The pH range selected was between 2.00 and 12.00 pH units.
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The range of pks of the artificial acids in simulation were or decreasing of one component may compensate with the
2-5, 6-8 and 9-11 for pk, pKa, and pky,, respectively. other.

3.3.2. Goodness-of-fit-test
This test contains the criteria for testing the correctness
The experimental details are reported in previous papersOf the prqposed chem|cal.model_ To evaluqte Whether or not
[19,46,47]and here a short explanation is presented. The the chemical model described the systematic variations in the
analytical reagent grade 4-(2-pyridylazo)resorcinol (PAR), experimental data adequately, t_he residuals errors shoul_d be
acetic acid, boric acid, phosphoric acid, sodium hydrox- analyzed. Commonly to recognize the best or real chemical
ide and potassium nitrate were all from Merck Company model when there are several possible models the error anal-

and Fluka. Extra pure acetonitrile (AN), methanol (MeOH) ysis using a goodness-of-fit test is a good choice. Residuals
and dioxane (DX) were used. The absorption spectra were ectors aith wavelength are simply calculated using exper-

recorded using a CECIL 9050 spectrophotometer with 1 nm IMmental (Aexp,) and calculated (&c,) absorbance values
spectral bandpass and scan speed 250 nm/min. The

p,_py ¥i = Aexp,i— Acalc,- The visual inspection of the residual
measurements were made using a Metrohm 692 pH metefPlOts may reveal the appropriateness of minimization pro-
equipped with a glass calomel combined electrode. To C€SS: The outliers and gross errors are simply identified in
calibrate the pH meter in the various binary AN-water, row (solutions) or columns (wavelengths) of the experimental
MeOH—water and DX—water mixtures used. 0.01M solu- absorbance data. The standard deviations of the residual val-
tions of oxalate and succinate buffers were employed. The UeS can easily be computed and compared with the standard
reference values of the pH, according to the activity scale, of d€viations of the experimental correspondences. Detection
these buffer solutions in different AN, MeOH and DX + water ©f Sign changes, any systematic variations (trend), an abrupt

mixtures have been reported previoddg—50]. In all exper- shift of level in the experiment in addition to detection of
iments, the ionic strengths of the solutions used, were keptthe outliers can be explored by visual inspection of the resid-

constant at 0.1 M using potassium nitrate as the supportingual pIoF. The values of the mean and standard deviation of
electrolyte and the titration performed under inert atmo- (€ residual close to zero and/or as much as a known exper-
sphere using argon gas bubbled through the titration vesseliMentally limited quantities show a good fitting process and
A stock solution (2.0< 10-5 M) of PAR was prepared. The proposed c?hem|ca.I model. An squqred sum of reS|du§1I less
acidic PAR solution titrated with a concentrated NaOH solu- than 0.01 is consider as a good fit. Hamilt&rfactor is

tion to reduce the dilution effect. The pH values in AN, expre_zssed asar_elatlve percent fit of <0.5% is taken as excel-
MeOH and DX + water solvent mixtures were corrected using €Nt fitand >2% is a poor one.

the equation pH=pH(R)— 8, where pH is the corrected
reading and pH(R) is the pH-meter reading obtained in a
partially agueous organic solvent, determined by Douheret
[49,50]. All measurements were carried out at the tempera-

3.2. Reagents and apparatus

3.3.3. The physical meaning of the estimated
parameters, molar absorptivities and species
concentrations
There are some physical constraints, which are generally

ture (25.0£0.5)°C. applied to concentrations of species and their molar absorp-
o ] ) tivities. Non-negativity of concentrations and molar absorp-
3.3. The criteria for accepting a chemical model tivities are guaranteed experimentally and current algorithms

] ] ) ] like non-negative least squares (NNLS) routine used in
Havel and Meloup presented different d|agnc_)st|c devises SQUAD forced to zero the negative values during the iter-
to evaluate a chem|cgl modElG,S_’Z]. The _m_ost Important  ations of the program. The log gfand molar absorptivities
among them are partial .correlatlon coeﬁ|C|ent§, goodness-, 41ues should be in a regular range, neither very high nor
of-fit-test, physical meaning of the spectral profiles and con- 1, |, Meloun et al[33] stated that the absolute values of
centration distribution diagramsvalues which significantly  gangard deviation of unknown parameters gives information
different from zero (3S.D. # value) and previous chemical 4,4t the hyperparabolic error surface in the neighborhood

experience of the understudy system. of the pit. For well conditioned parameters, the flat error sur-
) ) ) face (residual versus parameters), is a regular ellipsoid and
3.3.1. Partial correlation coefficients standard deviations are reasonably low. High standard devi-

The partial correlation coefficient(s) values explain the 5iqns values are found with ill-conditioned parameters. The
quantity of the interdependency of the unknown parameters, e |ateq standard deviatios(s;) x Fa < ; should be fulfilled
I.e. indicates the correlation between two unknown param- \herer, is equal to 3. The distributions of the standard devia-

eters when the other(s) are kept constant. Fundamentallyjons of the molar absorptivities must be Gaussian, otherwise,
correlation coefficients have values betwednand +1. +10r - aproneous estimates of molar absorptivities are obtained.

—1 mean complete dependence and zero value show totally

independence. Generally, two species, which show completes.3.4. Previous scientific reported quantities

correlation, could not be included inthe model. These species  Itis wise before starting to analyze the present experimen-
have very relevant formation constants and the increasingtal data, to search for the scientific library sources to have a
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good default about the number of ionizing groups, numerical LT T -7
values of relevant acidity constants and the probable spec-
tral traces of all expected components. These information’s
help us to use very good and very close to final results val- -39

ues as initial guesses in minimization process. This is critical ~ 1.30 -

when the numbers of unknowns are high and the risk of the | ;]

e NN

local minima destroys the output of the non-linear regression g 0.90 ]
. . o W *
analysis of the spectroscopic data. 2 §
3 0.70
2 i
< 0.50 -

4. Results and discussion 0.30 ‘ , = 1.0

4.1. Absorption spectra

T T T T T T
500 550 600 650

Wavelength (nm)

T T T
400 450

Two set of simulated and experimental absorption spec-
tra are prepared to examine the ability of the new algorithm Fig. 2. The absorption spectra of [PAR] = ZQ0~5 M in aqueous solution
in determination of acidity constants. The first set obtained in different pH.
using the acid/dissociation simulate function of SPECFIT/32 N .
program with specifications mentioned in the experimental methods requiring no knowledge of the instrumental error
section. The quantity of added noise to the generated absorpof the absorbance datainsi(A). Many of these methods
tion spectra is 0, 1, 2 and 3%. A sample three dimensional are empirical functions. The most common utilized func-
plot of the generated absorption spectra loaded with a 1%tions are eigenvalues (EV), reduced eigenvalues (Red. EV),
constant noise is shown ifig. 1 which has acidity con-  residual standard deviation (R.S.D.), root mean square error
stants 4.5, 7.0 and 9.5 for pf pK s, and pk,, respectively.  (rms), residual percentage variance (RPV), imbedded error
The wavelength and pH range of the spectra are 400-600 nn{lE), Malinowski indicator function (M Indicator Fcn), third
and 2.00-12.00 pH units, respectively. The second set arederivative of IE function (TD), factor indicator functions
experimental data obtained for the titrations of an acidic (IND) and real error indicator. The details of these empir-
2 x 10~5 M PAR solutions by a standard solution of a base in ical functions are presented[i81,32,51]. The application of
the 380—600 nm and pH range 2.00-13.50. The spectrophotothe indicator functions to the experimental data set is shown
metric titrations were carried out in different aqueous—AN, in Fig. 3. As it is expected for a three protic acids with four
MeOH and DX mixtures. A typical absorption spectra of the Spectroscopically distinct components, some of the utilized

acid—base titration of PAR in aqueous solution is shown in functions distinguish four significant factors for two sets of
Fig. 2. data.

4.2. Number of absorbing species 4.3. Determination of acidity constants of simulated and
experimental data sets

The number of light absorbing species in the two sets

of absorption spectra are obtained by different approximate ~ The acidity constants of the simulated absorption spectra
loaded with different noise levels are calculated by different

programs in conjunction with the new algorithm. All results
are shown in th@able 1. The general outputs of these pro-
grams are, calculated spectral profiles based on the optimum
values of the acidity constants, distribution diagram based on
the known pH values and the current acidity constants. The
reconstructed absorption spectra and residual plot based on
the calculated and original absorption spectra, acidity con-
stants and their standard deviation and error surface plots are
another important output of the mentioned programs. The
outputs of the new algorithm, are the spectral profiles of each
species and concentration distribution diagram of simulated
absorbance data, from the computer fitting of the simulated
20 absorption spectra with a 3% constant noise for an assumed
acid with pKy,, pKa, and p&;, equal to 4.50, 7.00 and 9.50,
respectively, are shown iRig. 4. As it can be seen from
Fig. 1. The simulated absorption spectra of an acid withy, 8.5, Table 1and the results of the new algorithm are consistent
pKa, =7.0 and pk, =9.5 loaded with 1% constant noise. with the other programs and the comparison of these results

200 +=----- 4

1.50 4

1.00 4

Absorbance

400 440 480 520 560 600
Wavelength (nm)



Table 1

The pk; values and statistics for simulated data using different programs

Data set Method PKa, PKay PKas r.s.s? s.d.r? R-factor (%)  NSE pcd
EV  REI REV TD® rp» r13 ro3

SPECFIT/32 4.508-0.00039 7.0@:0.00011 9.50@-0.00007 9.25e—7 4.85e—5 0.095 3 4 3 4 -0.163 -0.028 —0.192

SQUAD' 4.50+ 0.0003 7.0Gt 0.0001 9.5@t 0.0001 0.0001 0.0003 0.081 0.386 0.944 0.167
0% Noise N_ew algorithm 4.5@:0.0629 6.99+0.0921 9.5G:0.1157 1.05e-8 9.7e—6 0.001

Singlex 4.499 6.999 9.501 0.169 0.058 0.147

Difference spectra  4.500 7.000 9.500 1.07e-8 9.76e—6 0.001

DATAN 2.1 4.50 6.99 9.50 0.001 0.0004 0.01

SPECFIT/32 4.50%0.005 6.999t 0.001 9.4993 0.0007 0.0026 0.0014 1.371 3 4 3 4 -0.162 -0.028 -0.190

SQUAD 4.499+0.008 7.000t 0.002 9.50H .001 0.053 0.005 1.202 0.609 0.559 0.70
1% Noise N_ew algorithm 4.49@-0.011 6.99+0.012 9.49+0.010 0.0002 0.001 0.158

Singlex 4.483 7.002 9.499 5.5e-5 0.001 0.074

Difference spectra  4.497 7.001 9.499 2.65e—4 0.0014 0.201

DATAN 2.1 4.49 7.00 9.49 0.0004 0.004 0.245

SPECFIT/32 4.498 0.0082 6.996:0.0024 9.498-0.00137 0.001 0.003 1.405 3 4 3 4 -0.165 -0.028 -0.192

SQUAD 4.73+0.073 7.19£0.058 9.3H0.05 0.49 0.18 1.050 0.605 0.556 0.701
2% Noise N_ew algorithm 4.49-0.0130 6.99+ 0.0269 9.5@t 0.0346 6.62e—4  0.002 0.317

Singlea 4.424 7.002 9.488 2.19e—4  0.002 0.147

Difference spectra  4.498 6.996 9.498 0.0011 0.003 0.405

DATAN 2.1 4.49 6.99 9.49 0.0045 0.005 0.78

SPECFIT/32 4.48%0.0137 7.003:0.038 9.50Gt 0.002 0.0025 0.005 1.621 4 4 4 4 -0.161 -0.028 -0.193

SQUAD 4.495+0.0237 6.949-0.007 9.49Gt 0.004 0.45 0.018 1.303 0.616 0.568 0.70
3% Noise N_ew algorithm 4.48@0.020 6.99Gt 0.020 9.49Gt 0.020 0.0014 0.003 0.459

Singlea 4.123 6.993 10.490 0.001 0.004 0.338

Difference spectra  4.508 7.001 9.501 0.0025 0.005 0.621

DATAN 2.1 45 7.0 9.5 0.007 1.200

The exact values are 4.5, 7.0 and 9.5 for,pfpK,, and pk,,, respectively.
2 Residual sum of squares.
b Standard deviation of residuals.

¢ Number of significant factors.

d Partial correlation coefficient.
€ Third derivative of IE function ref[31].
f Number of wavelength is 37 and number of solution is 49, EV, eigenvalue; REI, real error indicator; MIF, Malinowski indicator function, REV, reduced eigenvalue.
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Fig. 3. The plot of different indicator functions for PAR absorption spectra in aqueous solution.

verify the good ability of the new algorithm to deconvolu- cation of the new algorithm in fitting process of the chemical
tion of the absorption data matrix with respect to the other model with experimental data.
programs. Thei—pH curve fitting is depicted ifig. 5at a The other practical and useful indicators for goodness of fit
selected wavelength. Asit can be seen fiag 5the distribu- test are the calculated Hamiltéfactor, squared sum of the
tion pattern of the experimental points around the calculated residuals, mean of residuals, standard deviation of the residu-
curve with zero mean and standard deviation. Its magnitudeals, standard deviation of the calculated acidity constants and
is the same as the original noise added to the absorbance impartial correlation coefficients from the minimization of the
the simulation process, and reveals that the selected chemicasimulated and experimental data are includethible 2. The
model is a good model to span all of the systematic variation results are in acceptable limit of these types of outputs, con-
in the data. firm the chemical model in one hand, and verify the proposed
All experimental data set were refined by different com- algorithm with respect to other programs. The comparison of
puter programs and also with the new algorithm. The acidity the statistical parameters calculated from a residual analysis
constants and some other useful statistical parameters are alseveals, which the proposed algorithm has significant prior-
calculated and listed ifiable 2. The pure spectral profile of ities over other previously presented such as SPECFIT/32
each species and concentration distribution diagrams wereand/or SQUAD.
calculated by computer refinement of absorption data in all  The partial correlation coefficients show the interrelations
solvent systems used and the results of the PAR in aqueouf the unknown parameters. The SPECFIT/32 and SQUAD
solution is shown irFig. 6for new algorithm. The computer  programs calculate the partial correlation coefficients and
plot of the data refinement at a selected wavelength showsare listed inTable 2. The obtained values did not show
the fitting process by—pH curve method &ig. 7. The more severe interrelations, the unknown parameters are almost
or less equal distribution of the experimental points around independent, and the unknown values can be obtained with-
the calculated curve indicate the correctness of the proposedut ambiguity of the absolute values. The standard deviation
chemical model to span all systematic variations. The three of the calculated parameters have significant difference to the
dimensional residual plots, results of the fitting (non-linear parameters and all fulfill the conditios(;8;) x Fa< g;, where
curve fitting) of the experimental data of PAR in aqueous Fais 3 and the(g;) andg;. A one tailed studenttest at 95%
solution to a triprotic solution equilibria using SQUAD, new confidence level and one degree of freedom§:314) using
algorithm and SPECFIT/32 are showrHigy. 8. The interval Table 2showed the significance difference betwgaralues
made by upper and lower limits of the new algorithm residual and their associated standard deviations. Hamikdactor
plot is narrower than the other two residual plots of SQUAD has the lowest values for the new algorithm with respect to
and SPECFIT/32. This is also indicates the successful appli-the remaining programs which again shows the quality of



Table 2
The pk; values and goodness of fit statistics for PAR experimental data in different mixed solvents using different programs

Solvent mixture Method PKa, PKa, PKeg r.s.s? s.dr®  Rfactor (%) NSE pcc
EV REI MIF REV TD® r12 r13 r23

SPECFIT/32 3.040.04 5470.014 12.25:-0.007 0.008 0.006 141 3 4 4 3 4 -0.215 0.027 -0.079

SQUAD 3.03+0.01 5.48t0.01 12.25+0.01 0.053 0.005 12 0.327 0.173 0.264
Pure water New algorithm 3.04:0.01 5.48:0.01 12.26+0.01 0.020 0.0005 0.39

Singlea 2.95 5.49 12.26 0.010 0.014 1.29

Difference spectra  3.04 5.47 12.25 0.008 0.006 1.42

DATAN 2.1 3.07 5.50 12.24 0.043 0.004 0.89

SPECFIT/32 2.&0.2 5.6+0.1 12.16+0.06 0.071 0.014 2.025 4 4 4 4 4 -0.216 0.0169 —0.0467

SQUAD 2.79+0.07 5.48+0.07 12.24+0.04 1.469 0.0436  1.300 0.565 0.540 0.782
10% ANS New algorithm 2.730.01 5.59+0.01 12.16+0.03 0.0012 0.0025 1.059

Singlex 2.63 5.62 12.17 0.018 0.025 5.165

Difference spectra  2.73 5.59 12.16 0.071 0.014 8.026

DATAN 2.1 2.73 5.59 12.16 0.0045 0.007 1.89

SPECFIT/32 2.#0.2 5.6+0.1 13.08+0.08 0.081 0.017 2.955 3 4 4 3 4 -0.211 0.0117 -0.0315

SQUAD 2.67+0.06 5.70:0.06 12.95+0.03 0.930 0.0347  2.401 0.562 0.551 0.665
20% AN New algorithm 2.72:0.02 5.89+0.04 13.0740.01 0.0016 0.0027 1.244

Singlex 1.88 6.01 13.0 0.025 0.029 6.125

Difference spectra  2.73 5.89 13.08 0.081 0.017 8.953

DATAN 2.1 2.72 5.89 13.07 0.064 0.045 2.01

SPECFIT/32 2.40.1 6.18+0.08 12.9H-0.06 0.033 0.010 2.731 3 4 4 3 4 —-0.141 0.0196 -0.0691

SQUAD 5.11+0.09 8.63:0.08 13.0A4:0.06 1.278 0.0406  2.122 0.634 0.599 0.813
30% AN New algorithm 2.3#&0.09 6.140.09 12.910.10 0.0005 0.0017 0.738

Singlex 1.86 6.27 12.86 0.014 0.022 4573

Difference spectra  2.38 6.18 12.91 0.033 0.010 5.735

DATAN 2.1 2.37 6.17 12.91 0.0043  0.033 1.980

SPECFIT/32 2.40.2 6.4+0.1 11.03+0.1 0.083 0.016 3.443 3 4 4 3 4 -0.114 0.0305 -0.0122

SQUAD 3.4+01 7.35+:0.08 11.4G6+0.05 1.245 0.0401  2.560 0.498 0.311 0.497
40% AN Ngw algorithm 2.29£0.15 6.35:0.14 11.03t0.15 0.0015 0.0024 1.278

Singlex 2.74 6.27 11.62 0.025 0.031 6.183

Difference spectra  2.30 6.35 11.03 0.083 0.016 9.441

DATAN 2.1 2.39 6.35 11.03 0.042 0.006 2.00

SPECFIT/32 2.220.08 6.48:0.04 12.99+0.04 0.011 0.006 3.329 4 4 4 4 4 —-0.090 0.0127 -0.0648

SQUAD 42+01 7.38+0.08 10.9:0.1 1.090 0.0375 0.976 0.528 0.503 0.473
50% AN Ngw algorithm 2.22-0.08 6.47+0.05 12.98t0.07 0.0003 0.0014 0.608

Singlex 1.85 6.48 12.95 0.004 0.012 2.351

Difference spectra  2.22 6.48 12.98 0.011 0.006 3.344

DATAN 2.1 2.22 6.46 12.98 0.004 0.0089 1.23

SPECFIT/32 3.&20.2 6.05+0.07 12.19+0.04 0.114 0.020 4.869 3 4 4 3 4 -0.219 0.0216 -0.0678

SQUAD 3.06+0.03 5.96:0.01 12.18:0.01 0.499 0.024 1.890 0.470 0.319 0.308
10% MeOH N_ew algorithm 2.9%:0.03 6.05+0.08 12.19:0.07 0.003 0.004 0.857

Singlea 3.01 6.04 12.22 0.072 0.052 4.403

Difference spectra  2.99 6.05 12.19 0.114 0.020 4.87

DATAN 2.1 3.01 5.8 12.11 0.0067 0.078 1.45
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Table 2 (Continued)

Solvent mixture ~ Method PKay PKay PKas r.s.s2 s.d.r®  R-factor (%) NSE pcd
EV 12 13 123

SPECFIT/32 2.8%0.06 5.3 0.04 12.66£0.01 0.015 0.008 2.732 3 —0.246  0.0235 —0.056

SQUAD 2.87+0.02 5.3740.01 12.66:0.01 0.160 0.013 0.977 0.794 0.767 0.953
20% New algorithm 2.86:0.03 5374 0.04 12.66:0.07 0.0004 0.0016 0.480
MeOH Singlea 2.87 5.40 12.53 0.007 0.016 2.011

Difference spectra  2.87 5.37 12.66 0.015 0.008 2.73

DATAN 2.1 2.9 5.36 12.61 0.003 0.0047  0.98

SPECFIT/32 2.6:0.2 5.6+0.1 12.23+0.06  0.179 0.029 3.192 3 —0.207 0.0205 —0.0273

SQUAD 2.62+0.08 5.62£0.04 12.23:t0.02 0.297 0.062 2.308 0.382 0.203 0.538
30% New algorithm 2.61%0.04 5.614+0.03  12.23t0.03 0.002 0.0034 0.873
MeOH Singlea 2.58 5.55 12.20 0.030 0.035 4.008

Difference spectra  2.62 5.62 12.23 0.179 0.030 8.190

DATAN 2.1 2.67 5.67 12.22 0.056 0.045 211

SPECFIT/32 2.74-0.06 6.27+£0.04 13.79:0.04  0.040 0.009 2.881 4 —0.106 0.0159 -0.0537

SQUAD 2.73+0.02 6.28£0.01  13.72£0.01  0.340 0.0205 1.361 0.556 0.364 0.565
40% New algorithm 2.73:0.02 6.274+0.01  13.72:0.02 0.0002 0.0009 0.196
MeOH Singlea 1.89 6.34 13.79 0.025 0.032 3.432

Difference spectra  2.74 6.27 13.78 0.040 0.009 2.882

DATAN 2.1 2.8 6.11 13.77 0.001 0.003 0.567

SPECFIT/32 2.620.11 6.3740.07 13.06£0.06  0.120 0.0186  2.203 3 —-0.137 0.0159 -0.0158

SQUAD 2.67+0.05 6.3 0.03 13.0A40.02 0.689 0.0314  2.089 0.670 0.474 0.620
50% New algorithm 2.68:0.05 6.37£0.06  13.06:0.05 0.0009 0.0017 0.449
MeOH Singlex 1.84 6.28 13.44 0.008 0.017 2.094

Difference spectra  2.69 6.37 13.06 0.120 0.018 5.204

DATAN 2.1 2.72 6.28 13.04 0.003 0.067 0.980

SPECFIT/32 2.96:0.13 5.72£0.09 12.3+0.1 0.30 0.018 2.445 3 —-0.320 -0.025 0.121

SQUAD 2.8+0.1 5.42+0.07 12.1%0.04 0.806 0.0323  2.000 0.478 0.412 0.504
10% DX New algorithm 2.96:0.04 5.72£0.06 12.1740.07 0.0035 0.0022 0.695

Singlea 3.19 4.93 12.19 0.054 0.035 6.973

Difference spectra  2.97 5.7 12.18 0.297 0.018 6.448

DATAN 2.1 2.96 5.7 12.17 0.034 0.024 1.650

SPECFIT/32 2.820.12 5.62-0.09 12.24+0.04 0.183 0.015 4736 3 —-0.421 -0.017 -—0.056

SQUAD 2.690+0.03 5.914+0.03 12.24£0.02 0.479 0.0176  1.340 0.478 0.437 0.581
20% DX Ngw algorithm 2.81-0.04 5.614+0.04 12.24+0.03 0.004 0.0023  0.667

Singlea 1.88 6.08 12.23 0.027 0.025 4.663

Difference spectra  2.82 5.61 12.24 0.183 0.015 4.736

DATAN 2.1 2.81 5.61 12.24 0.009 0.045 1.123

SPECFIT/32 2.7%0.12 5.83t0.09 12.32+t0.05 0.224 0.018 3.404 4 —-0.419 -0.004 0.038

SQUAD 2.66+0.04 6.06£0.04 12.310.02 0.781 0.0230 2.718 0.466 0.412 0.504
30% DX N_ew algorithm 2.76:0.09 5.83:0.05 12.3H0.01 0.006 0.0026  0.883

Singlea 2.59 6.21 12.32 0.028 0.026 4.587

Difference spectra  2.77 5.84 12.32 0.224 0.016 5.409

DATAN 2.1 2.76 5.83 12.31 0.012 0.0045  1.456

0T¢T
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SPECFIT/32 2.5%0.18 6.08£0.10 12.19+0.05 0.300 0.020 3.221 3 4 4 3 4 —0.245 0.0258 —-0.0212

SQUAD 2.53+0.04 6.20+0.03 12.19t0.02 0.520 0.018 3.011 0.446 0.408 0.484
40% DX N_ew algorithm 2.430.03 6.11+0.06 12.19+:0.04 0.007 0.003 0.953

Singlex 2.23 6.28 12.19 0.036 0.029 4.907

Difference spectra 2.43 6.12 12.19 0.611 0.025 8.984

DATAN 2.1 2.43 6.11 12.19 0.045 0.045 2.222

SPECFIT/32 2.4%0.06 6.56+ 0.06 12.29+-0.04 0.156 0.013 2.641 3 4 4 3 4 —0.123 0.0185 —0.036

SQUAD 2.51+0.03 6.58+0.03 12.29t0.02 0.481 0.015 1.222 0.460 0.392 0.494
50% DX New algorithm 2.4%0.02 6.56+ 0.03 12.29+0.03 0.004 0.002 0.763

Singlex 2.35 6.59 12.26 0.018 0.019 3.047

Difference spectra 2.48 6.56 12.29 0.157 0.012 4.656

DATAN 2.1 2.47 6.56 12.29 0.005 0.045 1.455

2 Residual sum of squares.

b Standard deviation of residuals.

¢ Number of significant factors.

d Partial correlation coefficient.

€ Third derivative of IE function ref[31].

f Number of wavelength is 43 and number of solutions is 45.

9 The percent is volume percent EV, eigenvalue; REI, real error indicator; MIF, Malinowski indicator function; REV, reduced eigenvalue.
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the fitting process which return to the quality of the experi-
mental data and also the deconvolution of the spectral data
to their pure spectra of the involve species at each pH value.
Residual sum of squares (r.s.s.) and standard deviation of
residuals (s.d.r.) are calculated for new algorithm along with
the other programs for all experimental data sets and included
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Fig. 8. Three dimensional residual plots of the absorption spectra of PAR in
aqueous solution by SQUAD, New algorithm and SPECFIT/32.
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Fig. 7. The plot of experimental (points) and calculated absorbance data
(line) vs. pH of PAR in aqueous solution at 452.5 nmisyH curve method.
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Table 3 decrease in the pfof the first step and the increase in those
The physical properties of utilized water and non-aqueous solvents of the second and third steps are due to increasing the mole
Solvent Dielectric constant (D) Donor number (DN)  fraction of AN, MeOH and DX in the binary mixed solvents.
Water 78 33 It is not surprising to mention that, the variations of the
Methanol (MeOH) 32.6 19 acidity constants are according to variation in the donor num-
Acetonitrile (AN) 36 14 ber and also dielectric solvents. As it is clear by addition of
Dioxane (DX) 2.2 14.8

all organic solvents to water the second and third ionization
stepsincreased and also the first step decreased. The degree of
in Table 2. The calculated values is an order of magnitude ariations is fully depending on the extent of the differences of
comparable to the other established programs and indicatephysical parameters (donor number and dielectric constant)
the quality of the fitting of the new algorithm. of the added organic solvents with water.

4.4. Effect of the solvent media on the acidity constants

The physical properties of the used solvents as co-solvent>: Conclusion

with water in order to study the effect of addition of non- . . . , .
aqueous solvents are listedTable 3. The acidity constants of a simulated tri-protic acid and

The pK, values of PAR obtained in AN, MeOH and also some experime_ntal data ofph_otometrictitrgtion of acidic
DX—water mixtures increase with percentage of AN, MeOH solution of_ 4-(2-pyrldylazo)_resorc_lnol (PAR) with standard
and DX. These variations could be explained by the fact that Pase solution were determined with some well known com-
there is preferential solvation in these media that is related PUter programs and new algorithm. The applicabilities of the
to the structural features of these mixtures. The composition €W algorithm were compared with the other programs by
of the immediate surroundings of a solute may differ from USINg reflned final acidity constants, pure spectra and dlstrl_-
the composition of the bulk mixture. Preferential solvation is Pution diagrams for all assumed species and error analysis

attributable to an excess or deficiency of molecules of one of ©f the residuals. According to statistical parameters, results
the solvents in these surroundir§g]. If the solute displays from residual analysis show good superiority observed for

no preference for the solvent molecules, the solvent com- "eW algorithm overprevious tested programs. Itis concluded

position in the primary coordination shell, in the immediate that the new algorithm may be used for more complex ther-

neighborhood of the solute, is the same as that in the bulk. MCdynamic or kinetic systems. Of course more successful
The data shown in Table 2 clearly illustrate the impor- examples are needed for generalization of the new algorithm.

tant influence of the nature of the solvent on the dissociation

reactions. It has been shown that the solvating aljBigy (as
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