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A new efficient, simple and versatile algorithm is presented for determination of the protolytic constants from spectrophotmet
ultiwavelength mode based on the combining of hard and soft modeling. The algorithm was checked by determining the acidity
f a triprotic acid from theoretical and real absorption–pH data. The real spectral data are obtained from photometric titration o
olutions of 4-(2-pyridylazo)resorcinol (PAR) by a standard base solution under an inert atmosphere. The algorithm starts the m
rocess using an user supplied number of components and initial guesses of the unknown parameters and refined in a least squ
ew algorithm is implemented in the new version of DATAN package (version 3.1). The validity of the obtained results was checked
ell known programs such as DATAN 2.1, SPECFIT/32, SQUAD, a modified version of difference spectra and aA–pH curve method. Th
omparison of the outputs of the DATAN 3.1 with the other programs reveals that there is a very good agreement between the obta
nd mentioned programs.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Acid dissociation constants are important parameters to
ndicate the extent of ionization of molecules in solution at
ifferent pH values. The acidity constants of organic reagents
lay a fundamental role in many analytical procedures such
s acid–base titration, solvent extraction, complex forma-

ion and ion transport. It has been shown that the acid–base
roperties affect the toxicity,[1] chromatographic retention
ehavior and pharmaceutical properties[2] of organic acids
nd bases. Much of the theoretical foundation of modern

∗ Corresponding author. Tel.: +98 214075448; fax: +98 8318369572.
E-mail address: jahan.ghasemi@tataa.com (J. Ghasemi).

organic chemistry is based on the observation of the effec
acid–base equilibrium of changing molecular structure[3].

It is still believed that spectrophotometric data are in
ently less precise than potentiometric data[4], consequentl
most equilibrium constants are determined by mean
potentiometric titrations, and only a few general program
available at present for processing spectrophotometric
[5–18]. The most widespread of programs and algorit
for determining the acidity constants from absorbance
are SQUAD, SPECFIT and DATAN 2.1.

SQUAD [12–16] and SPECFIT[17,18] are based on a
initial proposal of a chemical equilibrium model defin
species stoichiometries and based on mass-action law
mass balance equations (hard modeling methods) and
involve least squares curve fitting procedures. DATAN

039-9140/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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[19–24]program calculates spectral profiles, concentrations
and equilibrium constants by utilizing equilibrium expres-
sions that are related to the components.

The difference spectra method[25] is an elegant algo-
rithm for the analysis of the mono protic acid/base equilibria
using multiwavelength detection which recover both the dis-
sociation constants and absorption profiles spectra of organic
acid/base pairs in complex mixtures using a least square
method.

Here, we wish to describe an algorithm, which is applied
to the determination of the acidity constants by processing
of the pH–absorbance titration data. The ability of the new
version of DATAN package (DATAN 3.1, Multid Analysis
AB, Sweden, 2004) was compared with known programs
SQUAD, DATAN 2.1, SPECFIT/32, by refining the simu-
lated and experimental pH–absorbance data.

2. Theory

Since in all routine chemometrics the selection of the num-
ber of significant factors (chemical rank of data matrix or
determining number of light absorbing species) is a crucial
step, in the next section we pointed to the fundamental of the
existing methods, following by a brief description of each
algorithm in comparison with the new algorithm.
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used to assign the significant factors in PC decomposition.
Meloun et al.[32] have compared the several methods of
determining number of significant factors in spectroscopic
data and showed the advantages and limitations of the pre-
sented methods. According to Beer’s law the absorbance
matrix is related to the concentrations of species and molar
absorptivity, i.e.A = CV. The rank of matrixA is obtained
from the equation rank(A) = min[rank(C), rank(V)≤ min(m,
r, n)]. Since rank ofA is equal rank ofC or V, whichever
is smaller, and since rank(V)≤ r and rank(C)≤ r, then pro-
videdm ≤ r andn ≤ r, it will only be necessary to determine
the rank of matrixA which is equivalent to the number of
significant components[33,34]. All methods to identify the
true dimensionality of a data set are classified into two cat-
egories: (a) precise methods based upon a knowledge of the
instrumental error of the absorbance data,sinst(A) before sta-
tistical examination; (b) approximate methods requiring no
knowledge of the instrumental error of the absorbance data,
sinst(A). Many of these methods are empirical functions.

2.2. Algorithms

2.2.1. DATAN 2.1
The theory of DATa ANalysis (DATAN 2.1) method was

discussed by Scarmino and Kubista in several papers[20–24].
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.1. Principal component analysis and the rank of data
atrix

Most measurements are not selective for only the
tituents of interest; but the data also contain noise. In pr
al component analysis (PCA) the measured data are re

o contain only the information that is relevant to the sys
26–30]. The first step in PCA is to decompose the data m

into an orthonormal basis set:

n,m = Tn,qPT
q,m =

q∑
i=1

tipT
i (1)

hereAn,m contains then recorded spectra as rows, each
tized intom data points,Tn,q the score matrix which relat
o sample composition,PT, where the superscript ‘T’ denot
ranspose, is the loading matrix which relates to spectra
is the least ofn andm, which in spectroscopy usually isn.
q. (1) is exact. The second step in PCA is to separate
igenvectors that account for the systematic variations

hose corresponding to noise:

= Tn,rPT
r,m + En,m =

r∑
i=1

tipT
i + En,m = Â + En,m (2)

hereÂ is the predicted data matrix,En,m the residual matri
ndr is the number of significant components or chem
pecies present in the solution mixture. Elbergali et al.[31]
ave reviewed several indicator functions, which comm
The recorded spectra during a titration can be arrang
data matrix,A which is decomposed into an orthonorm

asis set by NIPALS or any PC decomposition equiva
ethod[35] as Eq.(2). The T and PT cannot be directl

elated to concentrations and spectral profiles. By assu
inear responses, the spectra in matrixA are linear combina
ions of the concentrationC and spectral responseV, of the
hemical components. So,

= CV + E ≈ CV (3)

TheT andPT matrices can be related toC andV, respec
ively, as follows:

= CR (4)

T = R−1V (5)

Since, ifR can be determined, theA andC matrices ca
e calculated from the Eqs.(4) and (5). The values of pr

olytic constants were varied to minimize the sum of sq
esiduals:

2 =
n∑

i=1

r∑
j=1

(
Tij −

r∑
k=1

rikckj

)2

(6)

herer andn are number of light absorbing species and n
er of solutions, respectively. The accuracy of this fit dep
rucially on the trial values of the equilibrium constants,
est fit determines their values and the elements of m
. The details of this algorithm are explained in ref.[21]

horoughly.



J. Ghasemi et al. / Talanta 68 (2006) 1201–1214 1203

2.2.2. SPECFIT/32 and SQUAD
SPECFIT/32 program was developed by Gammp et al.

[17,18] for the determination of stability constants from the
spectrophotometric titration data. The mathematical features
of this program have been described[17,18], and that is sim-
ilar to a general non-linear least squares program used for
calculation of stability constants. The SPECFIT32 is the lat-
est version of a global analysis program for equilibrium and
kinetic systems with singular value decomposition and non-
linear regression modeling using the Levenberg–Marquardt
method[36,37]. Gammp et al. used the factor analysis in
this program and in continuation evolving factor analysis
[38–41], as a powerful tool for the determination of inde-
pendent components in a given data matrix.

The Stability QUotients from Absorbance Data (SQUAD)
program[12] derived from SCOGS[13]. Leggett[12,13]for
the first time used a factor analysis method in the program for
determination of stability constants. Non-linear least-squares
method used is based on the minimization of the function,E:

E =
m∑

j=1

(Ycalcd− Yobsd)
2
jwj (7)

wherem is the number of data points andwj is the weight of
each absorbance value. The minimization approach, which
was used in SQUAD is more or less similar to the SPEC-
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pKa2) +

a1−pKa

c2j = α3j − α2j = 1 − 2α2j = 10(pKa1−pH)

+ 10(pH−pKa2) + 10(2pH−pKa2−pKa3)

− 1

10(pKa1−pH) + 10(pH−pKa2) + 10(2pH−pKa2−pKa3)

(9)

c3j = α4j − α3j = 1 − 2α3j = 10(pKa2−pH)

+10(pH−pKa3) + 10(pKa1+pKa2−pH)

− 1

1+10(pKa2−pH) + 10(pH−pKa3) + 10(pKa1+pKa2−pH)

(10)

whereα1, α2, α3 andα4 relate to the mole fraction of each
species that forms during the titration, at thejth pH. The
estimated values of pKa used for constructing the matrix,C,
that applied to solve the equation systems as a initial matrix
as follows:

V̂ = ACT(CCT)
−1

(11)

which the best fit has found by minimization of the value of
the squared error between the actual data and the model using
the following object function:

χ2 = 1

m(n − r)

∑∑
(Aij − Âij)

2
(12)
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FIT/32, i.e. the object function is a residual matrix, wh
should minimized with respect to the stability constants o
selected chemical equilibrium model. Running the SQU
has different stages that were described by Leggett in d
[16]. The calculated standard deviation of absorbances(A)
is used as the most important criterion for a fitness tes
after termination of the minimization process, the condi
sinst(A) ≈ s(A) is met and the HamiltonR-factor is also les
than 1%, the hypothesis of the chemical model is take
being the most probable, and is accepted.

2.2.3. Modified version of difference spectra
For multiprotic compounds or mixture ofna acid–bas

pairs, only na parameters and initial estimated values
pKa, needed in order to resolve the absorption spect
the compounds. In titration systems, a data matrixA from
photometric titration can be presented as Eq.(2). In order to
factorizeA, the rows ofC must be linearly independent
that a unique, best fit solution, exist. One of the peculiar
of the pH-dependent data set is an interdependence of th
tribution curve of acid with that of its conjugate base, wh
the fraction of acid and its conjugate base at a given pH
be calculated by the mass balance equations[25].

To develop a set of linearly independent vectors for
C matrix for a multiprotic acid system, we use the diff
ence of the distribution curves as Frans and Harris[25] for
monoprotic acids:

c1j = α2j − α1j = 1 − 2αij = 10(pH−pKa1) + 10(2pH−pKa1−

− 1

1 + 10(pH−pKa1) + 10(2pH−pKa1−pKa2) + 10(3pH−pK
10(3pH−pKa1−pKa2−pKa3)

2−pKa3) (8)

i j

herem, n andr as the same values defined above and w

ˆ = V̂ C (13)

The optimum set of pKas to fit a given data matrix ca
e found by minimizingχ2 with least-squares curve fittin
inimization as such SIMPLEX or Marquardt–Levenb
lgorithms in MATLAB[42–45].

.2.4. Analysis of the A–pH curve
In the classical single wavelength method orA–pH curve

nalysis method, an absorbance vector,y used as exper
ental data, which contains the absorbance values a
aximum wavelength of the acidic or basic form spectr
nd related to concentration matrix and molar absorptiv
f all species by Eqs.(2), (11) and (16).

Using initial estimates of the acidity constants and m
alance equations the concentration of all relevant sp
re calculatedC. Then an estimated value of the vectorv, is
btained by a linear least squares approach, Eq.(11). Now

he absorbance vectorâ (vector form) reconstructed, Eq.(13),
sing estimated value ofC andv̂ (vector form), and the resi
al vectore = a − â used as an objective function to refi

he acidity.
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2.2.5. New algorithm used by DATAN 3.1
In this study, we evaluate a new algorithm for the analysis

of spectrophotometric data in multiwavelength mode using
combination of hard and soft modeling. In the algorithm the
datan by m matrix,A, is decomposed into scores and loading
by PCA or SVD as shown in Eqs.(1)–(5).

In the above equations, the rotation matrixR is not known.
The matrixC is also unknown, but by assuming a chemical
model, we can computeC from a small set of unknown vari-
ables:

C = C(x1, x2, . . . , xp) (14)

In the case of protolytic equilibria, the unknown variables,
xi, are the equilibrium constants. For example, consider the
equilibria of a diprotic acid:

H2A
K1
�HA− + H+

HA−K2
�A2− + H+

with equilibrium constants beingK1 andK2, respectively. It
is not hard to see that:

cA = K1K2
2
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equations:

CTCR − CTT = 0

(T − CR) ◦
(

∂C
∂xi

R
)

= 0
(17)

where◦ denotes element by element multiplication of matri-
ces and∂C/∂xi is element wise differentiation ofC matrix
with respect the unknown paramatersxi. Here,R is directly
computed as (CTC)−1CTT from the upper equation. Insert-
ing this into the second equation gives the non-linear system
of p equations andp unknowns:

fi(x1, x2, . . . , xp) = (T − CR) ◦
(

∂C
∂xi

R
)

= 0,

i = 1,2, . . . , p. (18)

To solve Eq.(18), we use Newton’s method, but with
numerical evaluation of the Jacobian matrix, through differ-
ence quotients, e.g.:

∂fi

∂x1
= fi(x1 + h, x2, . . . , xp) − fi(x1, x2, . . . , xp)

h
(19)

where h is a small number. Sincep is usually small, the
extra function evaluations are not too time consuming and
e
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T units.
cH + K1cH + K1K2

cHA = K1cH

c2
H + K1cH + K1K2

cH2A = c2
H

c2
H + K1cH + K1K2

(15)

herecA denotes the analytical concentration of acid
imilarly for the other species (charges were omitted for
licity). The total concentration of acid has been normal

o one. Each row inC consists of the three concentratio
t value of pH, which is known from the titration, so t
ith the knowledge of only the equilibrium constantsK1 and
2, the entire matrixC can be computed. The number
nknowns has thus been reduced from 3n(the size ofC) to
(the number of equilibrium constants).
Any system, where a model of the chemical equilibri

nown, can be treated in the same way as above to fin
xpression of the form given by Eq.(14). The introductio
f a model means that the number of unknown variabl
educed fromrn (the dimension ofC) to p. Ideally,p should
e a small number.

To determine the unknownsR andx1, x2, . . ., xp, we use
q.(4) and solve the minimization problem:

inx,R

∥∥T − C(x1, x2, ..., xp)R
∥∥

F
(16)

It would have been possible to minimize
∥∥TR−1 − C

∥∥,
ut in practice it has find out that the minimization given
q. (16) works basically better. Setting the derivative of
xpression (Eq.(16)) to be minimized equal to zero gives
xpensive. Now upon solution of the Eq.(18) we have a
etter estimation of thexi parameters and the program c
rols goes up to the Eq.(14) and the calculations contin
ntil convergence achieved. As it is clear, this algorithm
ome priority over algorithm used in DATAN 2.1 in whi
he object function simply just evaluated for different se
f acidity constants without any using of the fitting res
ut numerical values of residuals.

. Experimental

The ability of the new algorithm in comparison to the p
ious established computer program was tested by diff
imulated and experimental data sets. The next two sec
re the description of the way of data simulation and ga

ng.

.1. Artificial data set

The various artificial or theoretical data sets were ge
ted using the combination of the Gaussian curves to
truct the spectral profiles of each species of the ass
riprotic acid molecule at the range 400–600 nm with
lution of 2 nm. Different random noises with mean z
nd standard deviations 0, 1, 2 and 3% of the maxim
bsorbance values are loaded on the simulated spectra
les. The concentrations of the four species of a triprotic a
ere generated using SPECFIT/32 acid dissociation rou
he pH range selected was between 2.00 and 12.00 pH
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The range of pKas of the artificial acids in simulation were
2–5, 6–8 and 9–11 for pKa1, pKa2 and pKa3, respectively.

3.2. Reagents and apparatus

The experimental details are reported in previous papers
[19,46,47]and here a short explanation is presented. The
analytical reagent grade 4-(2-pyridylazo)resorcinol (PAR),
acetic acid, boric acid, phosphoric acid, sodium hydrox-
ide and potassium nitrate were all from Merck Company
and Fluka. Extra pure acetonitrile (AN), methanol (MeOH)
and dioxane (DX) were used. The absorption spectra were
recorded using a CECIL 9050 spectrophotometer with 1 nm
spectral bandpass and scan speed 250 nm/min. The pH
measurements were made using a Metrohm 692 pH meter
equipped with a glass calomel combined electrode. To
calibrate the pH meter in the various binary AN–water,
MeOH–water and DX–water mixtures used, 0.01 M solu-
tions of oxalate and succinate buffers were employed. The
reference values of the pH, according to the activity scale, of
these buffer solutions in different AN, MeOH and DX + water
mixtures have been reported previously[48–50]. In all exper-
iments, the ionic strengths of the solutions used, were kept
constant at 0.1 M using potassium nitrate as the supporting
electrolyte and the titration performed under inert atmo-
sphere using argon gas bubbled through the titration vessel.
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or decreasing of one component may compensate with the
other.

3.3.2. Goodness-of-fit-test
This test contains the criteria for testing the correctness

of the proposed chemical model. To evaluate whether or not
the chemical model described the systematic variations in the
experimental data adequately, the residuals errors should be
analyzed. Commonly to recognize the best or real chemical
model when there are several possible models the error anal-
ysis using a goodness-of-fit test is a good choice. Residuals
vectors atith wavelength are simply calculated using exper-
imental (Aexp,i) and calculated (Acalc,i) absorbance values
by ri = Aexp,i− Acalc,i. The visual inspection of the residual
plots may reveal the appropriateness of minimization pro-
cess. The outliers and gross errors are simply identified in
row (solutions) or columns (wavelengths) of the experimental
absorbance data. The standard deviations of the residual val-
ues can easily be computed and compared with the standard
deviations of the experimental correspondences. Detection
of sign changes, any systematic variations (trend), an abrupt
shift of level in the experiment in addition to detection of
the outliers can be explored by visual inspection of the resid-
ual plot. The values of the mean and standard deviation of
the residual close to zero and/or as much as a known exper-
imentally limited quantities show a good fitting process and
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t
e xcel-
l

3
p
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a sorp-
t orp-
t thms
l d in
S iter-
a s
v nor
t of
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a hood
o sur-
f and
s devi-
a The
r
w via-
t wise,
e d.

3
en-

t ve a
stock solution (2.0× 10−5 M) of PAR was prepared. Th
cidic PAR solution titrated with a concentrated NaOH s

ion to reduce the dilution effect. The pH values in A
eOH and DX + water solvent mixtures were corrected u

he equation pH* = pH(R)− δ, where pH* is the correcte
eading and pH(R) is the pH-meter reading obtained
artially aqueous organic solvent, determined by Douh

49,50]. All measurements were carried out at the temp
ure (25.0± 0.5)◦C.

.3. The criteria for accepting a chemical model

Havel and Meloun presented different diagnostic dev
o evaluate a chemical model[16,32]. The most importan
mong them are partial correlation coefficients, goodn
f-fit-test, physical meaning of the spectral profiles and
entration distribution diagrams,β values which significantl
ifferent from zero (3S.D. <β value) and previous chemic
xperience of the understudy system.

.3.1. Partial correlation coefficients
The partial correlation coefficient(s) values explain

uantity of the interdependency of the unknown parame
.e. indicates the correlation between two unknown pa
ters when the other(s) are kept constant. Fundamen
orrelation coefficients have values between−1 and +1. +1 o
1 mean complete dependence and zero value show t

ndependence. Generally, two species, which show com
orrelation, could not be included in the model. These sp
ave very relevant formation constants and the increa
roposed chemical model. An squared sum of residua
han 0.01 is consider as a good fit. HamiltonR-factor is
xpressed as a relative percent fit of <0.5% is taken as e

ent fit and >2% is a poor one.

.3.3. The physical meaning of the estimated
arameters, molar absorptivities and species
oncentrations

There are some physical constraints, which are gene
pplied to concentrations of species and their molar ab

ivities. Non-negativity of concentrations and molar abs
ivities are guaranteed experimentally and current algori
ike non-negative least squares (NNLS) routine use
QUAD forced to zero the negative values during the
tions of the program. The log ofβ and molar absorptivitie
alues should be in a regular range, neither very high
oo low. Meloun et al.[33] stated that the absolute values
tandard deviation of unknown parameters gives informa
bout the hyperparabolic error surface in the neighbor
f the pit. For well conditioned parameters, the flat error

ace (residual versus parameters), is a regular ellipsoid
tandard deviations are reasonably low. High standard
tions values are found with ill-conditioned parameters.
elated standard deviation,s(βj) × Fa <βj should be fulfilled
hereFa is equal to 3. The distributions of the standard de

ions of the molar absorptivities must be Gaussian, other
rroneous estimates of molar absorptivities are obtaine

.3.4. Previous scientific reported quantities
It is wise before starting to analyze the present experim

al data, to search for the scientific library sources to ha
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good default about the number of ionizing groups, numerical
values of relevant acidity constants and the probable spec-
tral traces of all expected components. These information’s
help us to use very good and very close to final results val-
ues as initial guesses in minimization process. This is critical
when the numbers of unknowns are high and the risk of the
local minima destroys the output of the non-linear regression
analysis of the spectroscopic data.

4. Results and discussion

4.1. Absorption spectra

Two set of simulated and experimental absorption spec-
tra are prepared to examine the ability of the new algorithm
in determination of acidity constants. The first set obtained
using the acid/dissociation simulate function of SPECFIT/32
program with specifications mentioned in the experimental
section. The quantity of added noise to the generated absorp-
tion spectra is 0, 1, 2 and 3%. A sample three dimensional
plot of the generated absorption spectra loaded with a 1%
constant noise is shown inFig. 1 which has acidity con-
stants 4.5, 7.0 and 9.5 for pKa1, pKa2 and pKa3, respectively.
The wavelength and pH range of the spectra are 400–600 nm
and 2.00–12.00 pH units, respectively. The second set are
e idic
2 e in
t hoto-
m AN,
M the
a n in
F

4

sets
o mate

F
p

Fig. 2. The absorption spectra of [PAR] = 2.0× 10−5 M in aqueous solution
in different pH.

methods requiring no knowledge of the instrumental error
of the absorbance data,sinst(A). Many of these methods
are empirical functions. The most common utilized func-
tions are eigenvalues (EV), reduced eigenvalues (Red. EV),
residual standard deviation (R.S.D.), root mean square error
(rms), residual percentage variance (RPV), imbedded error
(IE), Malinowski indicator function (M Indicator Fcn), third
derivative of IE function (TD), factor indicator functions
(IND) and real error indicator. The details of these empir-
ical functions are presented in[31,32,51]. The application of
the indicator functions to the experimental data set is shown
in Fig. 3. As it is expected for a three protic acids with four
spectroscopically distinct components, some of the utilized
functions distinguish four significant factors for two sets of
data.

4.3. Determination of acidity constants of simulated and
experimental data sets

The acidity constants of the simulated absorption spectra
loaded with different noise levels are calculated by different
programs in conjunction with the new algorithm. All results
are shown in theTable 1. The general outputs of these pro-
grams are, calculated spectral profiles based on the optimum
values of the acidity constants, distribution diagram based on
t The
r ed on
t con-
s ts are
a The
o each
s lated
a lated
a umed
a 0,
r m
T tent
w sults
xperimental data obtained for the titrations of an ac
× 10−5 M PAR solutions by a standard solution of a bas

he 380–600 nm and pH range 2.00–13.50. The spectrop
etric titrations were carried out in different aqueous—
eOH and DX mixtures. A typical absorption spectra of
cid–base titration of PAR in aqueous solution is show
ig. 2.

.2. Number of absorbing species

The number of light absorbing species in the two
f absorption spectra are obtained by different approxi

ig. 1. The simulated absorption spectra of an acid with pKa1 = 4.5,
Ka2 = 7.0 and pKa3 = 9.5 loaded with 1% constant noise.
he known pH values and the current acidity constants.
econstructed absorption spectra and residual plot bas
he calculated and original absorption spectra, acidity
tants and their standard deviation and error surface plo
nother important output of the mentioned programs.
utputs of the new algorithm, are the spectral profiles of
pecies and concentration distribution diagram of simu
bsorbance data, from the computer fitting of the simu
bsorption spectra with a 3% constant noise for an ass
cid with pKa1, pKa2 and pKa3 equal to 4.50, 7.00 and 9.5
espectively, are shown inFig. 4. As it can be seen fro
able 1and the results of the new algorithm are consis
ith the other programs and the comparison of these re



J.G
hasem

ietal./Talanta
68

(2006)
1201–1214

1207

Table 1
The pKa values and statistics for simulated data using different programs

Data set Method pKa1 pKa2 pKa3 r.s.s.a s.d.r.b R-factor (%) NSFc PCCd

EV REI MIF REV TDe r12 r13 r23

0% Noise

SPECFIT/32 4.500± 0.00039 7.00± 0.00011 9.500± 0.00007 9.25e−7 4.85e−5 0.095 3 4 4 3 4 −0.163 −0.028 −0.192
SQUADf 4.50± 0.0003 7.00± 0.0001 9.50± 0.0001 0.0001 0.0003 0.081 0.386 0.944 0.167
New algorithm 4.50± 0.0629 6.99± 0.0921 9.50± 0.1157 1.05e−8 9.7e−6 0.001
Singleλ 4.499 6.999 9.501 0.169 0.058 0.147
Difference spectra 4.500 7.000 9.500 1.07e−8 9.76e−6 0.001
DATAN 2.1 4.50 6.99 9.50 0.001 0.0004 0.01

1% Noise

SPECFIT/32 4.501± 0.005 6.999± 0.001 9.4993± 0.0007 0.0026 0.0014 1.371 3 4 4 3 4 −0.162 −0.028 −0.190
SQUAD 4.499± 0.008 7.000± 0.002 9.501± .001 0.053 0.005 1.202 0.609 0.559 0.70
New algorithm 4.490± 0.011 6.99± 0.012 9.49± 0.010 0.0002 0.001 0.158
Singleλ 4.483 7.002 9.499 5.5e−5 0.001 0.074
Difference spectra 4.497 7.001 9.499 2.65e−4 0.0014 0.201
DATAN 2.1 4.49 7.00 9.49 0.0004 0.004 0.245

2% Noise

SPECFIT/32 4.498± 0.0082 6.996± 0.0024 9.498± 0.00137 0.001 0.003 1.405 3 4 4 3 4 −0.165 −0.028 −0.192
SQUAD 4.73± 0.073 7.19± 0.058 9.31± 0.05 0.49 0.18 1.050 0.605 0.556 0.701
New algorithm 4.49± 0.0130 6.99± 0.0269 9.50± 0.0346 6.62e−4 0.002 0.317
Singleλ 4.424 7.002 9.488 2.19e−4 0.002 0.147
Difference spectra 4.498 6.996 9.498 0.0011 0.003 0.405
DATAN 2.1 4.49 6.99 9.49 0.0045 0.005 0.78

3% Noise

SPECFIT/32 4.489± 0.0137 7.003± 0.038 9.500± 0.002 0.0025 0.005 1.621 4 4 4 4 4 −0.161 −0.028 −0.193
SQUAD 4.495± 0.0237 6.949± 0.007 9.490± 0.004 0.45 0.018 1.303 0.616 0.568 0.70
New algorithm 4.480± 0.020 6.990± 0.020 9.490± 0.020 0.0014 0.003 0.459
Singleλ 4.123 6.993 10.490 0.001 0.004 0.338
Difference spectra 4.508 7.001 9.501 0.0025 0.005 0.621
DATAN 2.1 4.5 7.0 9.5 0.007 1.200

The exact values are 4.5, 7.0 and 9.5 for pKa1, pKa2 and pKa3, respectively.
a Residual sum of squares.
b Standard deviation of residuals.
c Number of significant factors.
d Partial correlation coefficient.
e Third derivative of IE function ref.[31].
f Number of wavelength is 37 and number of solution is 49, EV, eigenvalue; REI, real error indicator; MIF, Malinowski indicator function, REV, reduced eigenvalue.
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Fig. 3. The plot of different indicator functions for PAR absorption spectra in aqueous solution.

verify the good ability of the new algorithm to deconvolu-
tion of the absorption data matrix with respect to the other
programs. TheA–pH curve fitting is depicted inFig. 5 at a
selected wavelength. As it can be seen fromFig. 5the distribu-
tion pattern of the experimental points around the calculated
curve with zero mean and standard deviation. Its magnitude
is the same as the original noise added to the absorbance in
the simulation process, and reveals that the selected chemical
model is a good model to span all of the systematic variation
in the data.

All experimental data set were refined by different com-
puter programs and also with the new algorithm. The acidity
constants and some other useful statistical parameters are also
calculated and listed inTable 2. The pure spectral profile of
each species and concentration distribution diagrams were
calculated by computer refinement of absorption data in all
solvent systems used and the results of the PAR in aqueous
solution is shown inFig. 6for new algorithm. The computer
plot of the data refinement at a selected wavelength shows
the fitting process byA–pH curve method atFig. 7. The more
or less equal distribution of the experimental points around
the calculated curve indicate the correctness of the proposed
chemical model to span all systematic variations. The three
dimensional residual plots, results of the fitting (non-linear
curve fitting) of the experimental data of PAR in aqueous
solution to a triprotic solution equilibria using SQUAD, new
a l
m ual
p AD
a ppli-

cation of the new algorithm in fitting process of the chemical
model with experimental data.

The other practical and useful indicators for goodness of fit
test are the calculated HamiltonR-factor, squared sum of the
residuals, mean of residuals, standard deviation of the residu-
als, standard deviation of the calculated acidity constants and
partial correlation coefficients from the minimization of the
simulated and experimental data are included inTable 2. The
results are in acceptable limit of these types of outputs, con-
firm the chemical model in one hand, and verify the proposed
algorithm with respect to other programs. The comparison of
the statistical parameters calculated from a residual analysis
reveals, which the proposed algorithm has significant prior-
ities over other previously presented such as SPECFIT/32
and/or SQUAD.

The partial correlation coefficients show the interrelations
of the unknown parameters. The SPECFIT/32 and SQUAD
programs calculate the partial correlation coefficients and
are listed inTable 2. The obtained values did not show
severe interrelations, the unknown parameters are almost
independent, and the unknown values can be obtained with-
out ambiguity of the absolute values. The standard deviation
of the calculated parameters have significant difference to the
parameters and all fulfill the condition;s(βj) × Fa <βj, where
Fa is 3 and thes(βj) andβj. A one tailed studentt-test at 95%
confidence level and one degree of freedom (t≥ 6.314) using
T
a
h ct to
t y of
lgorithm and SPECFIT/32 are shown inFig. 8. The interva
ade by upper and lower limits of the new algorithm resid
lot is narrower than the other two residual plots of SQU
nd SPECFIT/32. This is also indicates the successful a
able 2showed the significance difference betweenβ values
nd their associated standard deviations. HamiltonR-factor
as the lowest values for the new algorithm with respe

he remaining programs which again shows the qualit
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Table 2
The pKa values and goodness of fit statistics for PAR experimental data in different mixed solvents using different programs

Solvent mixture Method pKa1 pKa2 pKa3 r.s.s.a s.d.r.b R-factor (%) NSFc PCCd

EV REI MIF REV TDe r12 r13 r23

Pure water

SPECFIT/32 3.04± 0.04 5.47± 0.014 12.25± 0.007 0.008 0.006 1.41 3 4 4 3 4 −0.215 0.027 −0.079
SQUADf 3.03± 0.01 5.48± 0.01 12.25± 0.01 0.053 0.005 1.2 0.327 0.173 0.264
New algorithm 3.04± 0.01 5.48± 0.01 12.26± 0.01 0.020 0.0005 0.39
Singleλ 2.95 5.49 12.26 0.010 0.014 1.29
Difference spectra 3.04 5.47 12.25 0.008 0.006 1.42
DATAN 2.1 3.07 5.50 12.24 0.043 0.004 0.89

10% ANg

SPECFIT/32 2.7± 0.2 5.6± 0.1 12.16± 0.06 0.071 0.014 2.025 4 4 4 4 4 −0.216 0.0169 −0.0467
SQUAD 2.79± 0.07 5.48± 0.07 12.24± 0.04 1.469 0.0436 1.300 0.565 0.540 0.782
New algorithm 2.73± 0.01 5.59± 0.01 12.16± 0.03 0.0012 0.0025 1.059
Singleλ 2.63 5.62 12.17 0.018 0.025 5.165
Difference spectra 2.73 5.59 12.16 0.071 0.014 8.026
DATAN 2.1 2.73 5.59 12.16 0.0045 0.007 1.89

20% AN

SPECFIT/32 2.7± 0.2 5.6± 0.1 13.08± 0.08 0.081 0.017 2.955 3 4 4 3 4 −0.211 0.0117 −0.0315
SQUAD 2.67± 0.06 5.70± 0.06 12.95± 0.03 0.930 0.0347 2.401 0.562 0.551 0.665
New algorithm 2.72± 0.02 5.89± 0.04 13.07± 0.01 0.0016 0.0027 1.244
Singleλ 1.88 6.01 13.0 0.025 0.029 6.125
Difference spectra 2.73 5.89 13.08 0.081 0.017 8.953
DATAN 2.1 2.72 5.89 13.07 0.064 0.045 2.01

30% AN

SPECFIT/32 2.4± 0.1 6.18± 0.08 12.91± 0.06 0.033 0.010 2.731 3 4 4 3 4 −0.141 0.0196 −0.0691
SQUAD 5.11± 0.09 8.63± 0.08 13.07± 0.06 1.278 0.0406 2.122 0.634 0.599 0.813
New algorithm 2.37± 0.09 6.17± 0.09 12.91± 0.10 0.0005 0.0017 0.738
Singleλ 1.86 6.27 12.86 0.014 0.022 4.573
Difference spectra 2.38 6.18 12.91 0.033 0.010 5.735
DATAN 2.1 2.37 6.17 12.91 0.0043 0.033 1.980

40% AN

SPECFIT/32 2.4± 0.2 6.4± 0.1 11.03± 0.1 0.083 0.016 3.443 3 4 4 3 4 −0.114 0.0305 −0.0122
SQUAD 3.4± 0.1 7.35± 0.08 11.40± 0.05 1.245 0.0401 2.560 0.498 0.311 0.497
New algorithm 2.29± 0.15 6.35± 0.14 11.03± 0.15 0.0015 0.0024 1.278
Singleλ 2.74 6.27 11.62 0.025 0.031 6.183
Difference spectra 2.30 6.35 11.03 0.083 0.016 9.441
DATAN 2.1 2.39 6.35 11.03 0.042 0.006 2.00

50% AN

SPECFIT/32 2.22± 0.08 6.48± 0.04 12.99± 0.04 0.011 0.006 3.329 4 4 4 4 4 −0.090 0.0127 −0.0648
SQUAD 4.2± 0.1 7.38± 0.08 10.9± 0.1 1.090 0.0375 0.976 0.528 0.503 0.473
New algorithm 2.22± 0.08 6.47± 0.05 12.98± 0.07 0.0003 0.0014 0.608
Singleλ 1.85 6.48 12.95 0.004 0.012 2.351
Difference spectra 2.22 6.48 12.98 0.011 0.006 3.344
DATAN 2.1 2.22 6.46 12.98 0.004 0.0089 1.23

10% MeOH

SPECFIT/32 3.0± 0.2 6.05± 0.07 12.19± 0.04 0.114 0.020 4.869 3 4 4 3 4 −0.219 0.0216 −0.0678
SQUAD 3.06± 0.03 5.96± 0.01 12.18± 0.01 0.499 0.024 1.890 0.470 0.319 0.308
New algorithm 2.99± 0.03 6.05± 0.08 12.19± 0.07 0.003 0.004 0.857
Singleλ 3.01 6.04 12.22 0.072 0.052 4.403
Difference spectra 2.99 6.05 12.19 0.114 0.020 4.87
DATAN 2.1 3.01 5.8 12.11 0.0067 0.078 1.45
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Solvent mixture Method pKa1 pKa2 pKa3 r.s.s.a s.d.r.b R-factor (%) NSFc PCCd

EV REI MIF REV TDe r12 r13 r23

20%
MeOH

SPECFIT/32 2.87± 0.06 5.37± 0.04 12.66± 0.01 0.015 0.008 2.732 3 4 4 3 4 −0.246 0.0235 −0.056
SQUAD 2.87± 0.02 5.37± 0.01 12.66± 0.01 0.160 0.013 0.977 0.794 0.767 0.953
New algorithm 2.86± 0.03 5.37± 0.04 12.66± 0.07 0.0004 0.0016 0.480
Singleλ 2.87 5.40 12.53 0.007 0.016 2.011
Difference spectra 2.87 5.37 12.66 0.015 0.008 2.73
DATAN 2.1 2.9 5.36 12.61 0.003 0.0047 0.98

30%
MeOH

SPECFIT/32 2.6± 0.2 5.6± 0.1 12.23± 0.06 0.179 0.029 3.192 3 4 4 3 4 −0.207 0.0205 −0.0273
SQUAD 2.62± 0.08 5.62± 0.04 12.23± 0.02 0.297 0.062 2.308 0.382 0.203 0.538
New algorithm 2.61± 0.04 5.61± 0.03 12.23± 0.03 0.002 0.0034 0.873
Singleλ 2.58 5.55 12.20 0.030 0.035 4.008
Difference spectra 2.62 5.62 12.23 0.179 0.030 8.190
DATAN 2.1 2.67 5.67 12.22 0.056 0.045 2.11

40%
MeOH

SPECFIT/32 2.74± 0.06 6.27± 0.04 13.79± 0.04 0.040 0.009 2.881 4 4 4 4 4 −0.106 0.0159 −0.0537
SQUAD 2.73± 0.02 6.28± 0.01 13.72± 0.01 0.340 0.0205 1.361 0.556 0.364 0.565
New algorithm 2.73± 0.02 6.27± 0.01 13.72± 0.02 0.0002 0.0009 0.196
Singleλ 1.89 6.34 13.79 0.025 0.032 3.432
Difference spectra 2.74 6.27 13.78 0.040 0.009 2.882
DATAN 2.1 2.8 6.11 13.77 0.001 0.003 0.567

50%
MeOH

SPECFIT/32 2.69± 0.11 6.37± 0.07 13.06± 0.06 0.120 0.0186 2.203 3 4 4 3 4 −0.137 0.0159 −0.0158
SQUAD 2.67± 0.05 6.37± 0.03 13.07± 0.02 0.689 0.0314 2.089 0.670 0.474 0.620
New algorithm 2.68± 0.05 6.37± 0.06 13.06± 0.05 0.0009 0.0017 0.449
Singleλ 1.84 6.28 13.44 0.008 0.017 2.094
Difference spectra 2.69 6.37 13.06 0.120 0.018 5.204
DATAN 2.1 2.72 6.28 13.04 0.003 0.067 0.980

10% DX

SPECFIT/32 2.96± 0.13 5.72± 0.09 12.3± 0.1 0.30 0.018 2.445 3 4 4 3 4 −0.320 −0.025 0.121
SQUAD 2.8± 0.1 5.42± 0.07 12.11± 0.04 0.806 0.0323 2.000 0.478 0.412 0.504
New algorithm 2.96± 0.04 5.72± 0.06 12.17± 0.07 0.0035 0.0022 0.695
Singleλ 3.19 4.93 12.19 0.054 0.035 6.973
Difference spectra 2.97 5.7 12.18 0.297 0.018 6.448
DATAN 2.1 2.96 5.7 12.17 0.034 0.024 1.650

20% DX

SPECFIT/32 2.82± 0.12 5.62± 0.09 12.24± 0.04 0.183 0.015 4.736 3 4 4 3 4 −0.421 −0.017 −0.056
SQUAD 2.690± 0.03 5.91± 0.03 12.24± 0.02 0.479 0.0176 1.340 0.478 0.437 0.581
New algorithm 2.81± 0.04 5.61± 0.04 12.24± 0.03 0.004 0.0023 0.667
Singleλ 1.88 6.08 12.23 0.027 0.025 4.663
Difference spectra 2.82 5.61 12.24 0.183 0.015 4.736
DATAN 2.1 2.81 5.61 12.24 0.009 0.045 1.123

30% DX

SPECFIT/32 2.77± 0.12 5.83± 0.09 12.32± 0.05 0.224 0.018 3.404 4 4 4 4 4 −0.419 −0.004 0.038
SQUAD 2.66± 0.04 6.06± 0.04 12.31± 0.02 0.781 0.0230 2.718 0.466 0.412 0.504
New algorithm 2.76± 0.09 5.83± 0.05 12.31± 0.01 0.006 0.0026 0.883
Singleλ 2.59 6.21 12.32 0.028 0.026 4.587
Difference spectra 2.77 5.84 12.32 0.224 0.016 5.409
DATAN 2.1 2.76 5.83 12.31 0.012 0.0045 1.456
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40% DX

SPECFIT/32 2.51± 0.18 6.08± 0.10 12.19± 0.05 0.300 0.020 3.221 3 4 4 3 4 −0.245 0.0258 −0.0212
SQUAD 2.53± 0.04 6.20± 0.03 12.19± 0.02 0.520 0.018 3.011 0.446 0.408 0.484
New algorithm 2.43± 0.03 6.11± 0.06 12.19± 0.04 0.007 0.003 0.953
Singleλ 2.23 6.28 12.19 0.036 0.029 4.907
Difference spectra 2.43 6.12 12.19 0.611 0.025 8.984
DATAN 2.1 2.43 6.11 12.19 0.045 0.045 2.222

50% DX

SPECFIT/32 2.47± 0.06 6.56± 0.06 12.29± 0.04 0.156 0.013 2.641 3 4 4 3 4 −0.123 0.0185 −0.036
SQUAD 2.51± 0.03 6.58± 0.03 12.29± 0.02 0.481 0.015 1.222 0.460 0.392 0.494
New algorithm 2.47± 0.02 6.56± 0.03 12.29± 0.03 0.004 0.002 0.763
Singleλ 2.35 6.59 12.26 0.018 0.019 3.047
Difference spectra 2.48 6.56 12.29 0.157 0.012 4.656
DATAN 2.1 2.47 6.56 12.29 0.005 0.045 1.455

a Residual sum of squares.
b Standard deviation of residuals.
c Number of significant factors.
d Partial correlation coefficient.
e Third derivative of IE function ref.[31].
f Number of wavelength is 43 and number of solutions is 45.
g The percent is volume percent EV, eigenvalue; REI, real error indicator; MIF, Malinowski indicator function; REV, reduced eigenvalue.
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Fig. 6. Pure spectral profiles and distribution diagram of PAR in aqueous
solution H3L (1), H2L (2), HL (3) and L (4) obtained by new algorithm.

the fitting process which return to the quality of the experi-
mental data and also the deconvolution of the spectral data
to their pure spectra of the involve species at each pH value.
Residual sum of squares (r.s.s.) and standard deviation of
residuals (s.d.r.) are calculated for new algorithm along with
the other programs for all experimental data sets and included

Fig. 7. The plot of experimental (points) and calculated absorbance data
(line) vs. pH of PAR in aqueous solution at 452.5 nm byA–pH curve method.

Fig. 8. Three dimensional residual plots of the absorption spectra of PAR in
aqueous solution by SQUAD, New algorithm and SPECFIT/32.
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Table 3
The physical properties of utilized water and non-aqueous solvents

Solvent Dielectric constant (D) Donor number (DN)

Water 78 33
Methanol (MeOH) 32.6 19
Acetonitrile (AN) 36 14
Dioxane (DX) 2.2 14.8

in Table 2. The calculated values is an order of magnitude
comparable to the other established programs and indicate
the quality of the fitting of the new algorithm.

4.4. Effect of the solvent media on the acidity constants

The physical properties of the used solvents as co-solvent
with water in order to study the effect of addition of non-
aqueous solvents are listed inTable 3.

The pKa values of PAR obtained in AN, MeOH and
DX–water mixtures increase with percentage of AN, MeOH
and DX. These variations could be explained by the fact that
there is preferential solvation in these media that is related
to the structural features of these mixtures. The composition
of the immediate surroundings of a solute may differ from
the composition of the bulk mixture. Preferential solvation is
attributable to an excess or deficiency of molecules of one of
the solvents in these surroundings[52]. If the solute displays
no preference for the solvent molecules, the solvent com-
position in the primary coordination shell, in the immediate
neighborhood of the solute, is the same as that in the bulk.

The data shown in Table 2 clearly illustrate the impor-
tant influence of the nature of the solvent on the dissociation
reactions. It has been shown that the solvating ability[53] (as
expressed by the Guttmann donicity scale) and dielectric con-
stant of the solvent play a fundamental role in dissociation
r i.e.
d
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decrease in the pKa of the first step and the increase in those
of the second and third steps are due to increasing the mole
fraction of AN, MeOH and DX in the binary mixed solvents.

It is not surprising to mention that, the variations of the
acidity constants are according to variation in the donor num-
ber and also dielectric solvents. As it is clear by addition of
all organic solvents to water the second and third ionization
steps increased and also the first step decreased. The degree of
ariations is fully depending on the extent of the differences of
physical parameters (donor number and dielectric constant)
of the added organic solvents with water.

5. Conclusion

The acidity constants of a simulated tri-protic acid and
also some experimental data of photometric titration of acidic
solution of 4-(2-pyridylazo)resorcinol (PAR) with standard
base solution were determined with some well known com-
puter programs and new algorithm. The applicabilities of the
new algorithm were compared with the other programs by
using refined final acidity constants, pure spectra and distri-
bution diagrams for all assumed species and error analysis
of the residuals. According to statistical parameters, results
from residual analysis show good superiority observed for
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